
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An adaptive neuro-control approach for multi-machine power systems

Abstract We investigate an adaptive neuro-control approach, namely goal representation heuristic dynamic programming (GrHDP), and study the nonlinear optimal control on the multi-machine power system. Compared with the conventional control approaches, the proposed controller conducts the adaptive learning control and assumes unknown of the power system mathematic model. Besides, the proposed design can provide an adaptive reward signal that guides the power system dynamic performance over time. In this paper, we integrate the novel neuro-controller into the multi-machine power system and provide adaptive supplementary control signals. For fair comparative studies, we include the control performance with the conventional heuristic dynamic programming (HDP) approach under the same conditions. The damping performances with and without the conventional power system stabilizer (PSS) are also presented for comparison. Simulation results verify that the investigated neuro-controller can achieve improved performance in terms of the transient stability and robustness under different fault conditions.
- Huazhong University of Science and Technology China (People's Republic of)
- South Dakota State University United States
- South Dakota State University United States
- University of Rhode Island United States
Excitation control, Multi-machine power system, 000, 620, 629, Transient stability, Goal representation adaptive dynamic programming
Excitation control, Multi-machine power system, 000, 620, 629, Transient stability, Goal representation adaptive dynamic programming
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).23 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
