
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimal placement and sizing of distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization technique

Abstract This paper attempts to minimize power losses in radial distribution networks and facilitates an enhancement in bus voltage profile by determining optimal locations, optimally sized distributed generators and shunt capacitors by hybrid Harmony Search Algorithm approach. To overcome the drawback of premature and slow convergence of Harmony Search Algorithm (HSA) over multi model fitness landscape, the Particle Artificial Bee Colony algorithm (PABC) is utilized to enhance the harmony memory vector. In the first approach, the formulation echoes the determination of loss sensitivity factor to decide the sensitive nodes and thereafter decides on the optimal rating through the use of hybrid Algorithm. The second approach encircles the role of hybrid Algorithm to search for both the optimal candidate nodes and sizing of compensating devices by significant increase in loss reduction with the former approach. The procedure travels to examine the robustness of the proposed hybrid approach on 33 and 119 node test systems and the result outcomes are compared with the other techniques existing in the literature. The simulation results reveal the efficiency of the proposed hybrid algorithm in obtaining optimal solution for simultaneous placement of distributed generators and shunt capacitors in distribution networks.
- SASTRA University India
- SASTRA University India
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).196 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
