Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Electrical Power & Energy Systems
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Public charging infrastructure in Japan – A stochastic modelling analysis

Authors: Julian Rominger; Csaba Farkas;

Public charging infrastructure in Japan – A stochastic modelling analysis

Abstract

Abstract Electric vehicles (EV) are treated as a breakthrough technology in the automotive market. The novelty of this technology also implicates that the incidence of these vehicles worldwide is still low. An important issue regarding EVs is the existence of proper charging infrastructure as waiting at charging stations due to an inadequate number of chargers can discourage EV owners. However, as the number of EVs and charging stations are low at present, real world experience is not available, so computer simulations are required for the planning of such charging stations. We developed a stochastic model in this paper that includes driving and charging behaviour of EV owners in Japan. The model is based on Monte Carlo methods and was implemented in MATLAB. We conducted simulations with this model to find out whether the existing infrastructure is adequate for the charging of a large number of EVs. The results indicate that Japan is well prepared for an increase in plug-in vehicles (PHEVs) in the near future: currently the country has 6 fast chargers for 100 electric cars and for this ratio - on average -, waiting probability at DC (direct current) fast chargers ranges lower than 5%, which is an acceptable value for EV owners. If, however, the ratio decreases, waiting probability increases exponentially.

Country
Germany
Keywords

ddc:004, DATA processing & computer science, info:eu-repo/classification/ddc/004, 004

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Average
gold