Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Electrical Power & Energy Systems
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A new design of a test platform for testing multiple partial discharge sources

Authors: Mor, A. R. (author); Castro Heredia, L.C. (author); Harmsen, D.A. (author); Muñoz Muñoz, F.A. (author);

A new design of a test platform for testing multiple partial discharge sources

Abstract

Partial discharge (PD) measurements are an effective tool for insulation assessment of high-voltage (HV) equipment widely used in both HV laboratories and in field tests. This paper presents the design of a test platform for electrical detection of partial discharges that contribute to the understanding of the phenomena. The test set-up comprises a collection of electrodes for the production of artificial PD sources frequently found in HV equipment, such as positive corona, negative corona, surface discharges, internal discharges, floating component and free moving particle. The test set-up has been designed in such a way that the gaps and clearances can be adjusted to modify the discharge characteristics, e.g. the discharge inception voltage, amplitude, repetition rate, etc. Besides, the platform has a symmetrical and radial arrangement of the PD sources around the coupling capacitor of the PD measuring systems with contribute to reduce the effect of the measuring circuit on the measurements. Relevant characteristics of the presented design is that the sensing of the PD signals is done by a high frequency current transformer (HFCT) with a wide bandwidth and the acquisition of the signals by a digital oscilloscope. A software tool was designed for the purpose of processing of the digitalized signals which proved to be an excellent workbench for studying the performance of clustering techniques.

Country
Netherlands
Keywords

Partial discharges, 621, Phase resolved partial discharge pattern, Clustering techniques

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 199
    download downloads 175
  • 199
    views
    175
    downloads
    Data sourceViewsDownloads
    TU Delft Repository199175
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
60
Top 10%
Top 10%
Top 1%
199
175
Green
gold
Related to Research communities
Energy Research