
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Comparison analysis on damping mechanisms of power systems with induction generator based wind power generation

Comparison analysis on damping mechanisms of power systems with induction generator based wind power generation
Abstract The rotor structure varies with different types of wind power induction generator (WPIG), which leads to their different dynamic behaviors during power system disturbances. This paper proposes a generic implementation framework of explicit damping torque analysis to investigate the damping mechanisms of power system integrated with induction generator based wind power generation, so that the essential difference and inner connection between two main types of WPIG (i.e., DFIG and FSIG) in damping power system oscillation can be revealed. The linearized models which can represent DFIG and FSIG as well as three transitional wound rotor generators are established to facilitate the analytical comparison analysis. Phillips-Heffron system linearized model is employed to derive an explicit expression of damping torque contribution from main dynamic components of WPIGs. In the paper, 16-machine 5-area NYPS-NETS example system is used for the demonstration of proposed framework and comparison analysis. Both damping effectiveness and robustness of different WPIGs are extensively examined under multiple operating status, in order to provide useful guidance to system planner for the real-time operation of induction generator based wind generation.
- Queen's University Belfast United Kingdom
- National Grid (United States) United States
- Tianjin University China (People's Republic of)
- Hong Kong Polytechnic University China (People's Republic of)
- National Grid (United States) United States
620
620
2 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
