Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Electrical Power & Energy Systems
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transmission switching, demand response and energy storage systems in an innovative integrated scheme for managing the uncertainty of wind power generation

Authors: Ahmad Nikoobakht; Jamshid Aghaei; Joao P. S. Catalao; Joao P. S. Catalao; Joao P. S. Catalao; Mohammad Mardaneh; Miadreza Shafie-khah;

Transmission switching, demand response and energy storage systems in an innovative integrated scheme for managing the uncertainty of wind power generation

Abstract

Abstract This paper addresses the stochastic security constrained unit commitment (SSCUC) problem with flexibility resources for managing the uncertainty of wind power generation (WPG). Departing from the traditional flexibility resources such as the thermal units with fast up/down spinning reserves and transmission switching (TS), this paper explores also the use of demand response (DR) and energy storage (ES) systems in an innovative integrated scheme. The proposed scheme utilizes a stochastic optimization framework to coordinate the flexibility resources dealing with the uncertainty of WPGs and equipment failures. The stochastic optimization model is formulated as a mixed-integer linear programming (MIP), and this problem is large and computationally complex even for medium sized systems. Accordingly, we present a novel accelerating decomposition technique aimed at solving this problem and reducing the number of iterations and CPU time. Numerical simulation results on the modified 6-bus system and on large-scale power systems, i.e. IEEE 118 and 300-bus systems, clearly demonstrate the benefits of applying flexibility resources for uncertainty management and the efficacy of the proposed solution strategy for large-scale systems.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
gold