
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A coordinated control of hybrid ac/dc microgrids with PV-wind-battery under variable generation and load conditions

Traditional power generation and consumption are undergoing major transformation. One of the tendencies is to integrate microgrids into the distribution network with high penetration of renewable energy resources. This paper proposes a coordinated control strategy for a microgrid with hybrid energy resources and ac/dc loads. First, a local-level coordinated control strategy of distributed converters is presented, where a model predictive power and voltage control (MPPVC) method is developed for the ac/dc interlinking converter to provide high quality voltages and to ensure smooth power transfer between the dc and ac subgrids. Meanwhile, smooth grid synchronization and connection can be achieved. After that, a system-level energy management scheme (EMS) is adopted to ensure stable operation under variable power generation and consumption conditions. Simulation studies based on a 3.5 MW system demonstrate the effectiveness of the proposed control strategy.
- Tsinghua University China (People's Republic of)
- Aalborg University Library (AUB) Denmark
- Aalborg University Library (AUB) Aalborg Universitet Research Portal Denmark
- Aalborg University Library (AUB) Denmark
- Tsinghua–Berkeley Shenzhen Institute China (People's Republic of)
Coordinated control, Energy storage, Hybrid ac/dc microgrids
Coordinated control, Energy storage, Hybrid ac/dc microgrids
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).149 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
