Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS - Institutional...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Electrical Power & Energy Systems
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Preventing cascading tripping of distributed generators during non-islanding conditions using thermostatic loads

Authors: Vincenzo Trovato; Vincenzo Trovato; Inmaculada Martinez Sanz; Balarko Chaudhuri; Goran Strbac;

Preventing cascading tripping of distributed generators during non-islanding conditions using thermostatic loads

Abstract

Abstract Integration of large amounts of asynchronous renewable energy sources (RES) would reduce the effective inertia of the future Great Britain (GB) network. As a result, after a large infeed loss, containing the grid frequency and limiting its rate of change (RoCoF) above certain thresholds would be a challenge for the system operator. In particular, large RoCoFs could activate RoCoF-sensitive loss-of-mains (LoM) protections of distributed generators (DGs) and trigger cascading disconnections. In this context, thermostatic loads (TCLs) can be controlled to collectively provide support and contribute to the overall system inertial and frequency response. This paper focuses on the transient response period after a frequency disturbance and the fast protection events occurring in this time frame. In particular, this works evaluates the interplay between the local activation settings of LoM protection of DGs and those used to enable the TCL support. This interaction is analysed through a case study on a 36-bus dynamic equivalent of the GB network which shows how local post-fault frequency dynamics drive the overall system response. Results show that TCLs are able to prevent RoCoF-driven DG tripping and reduce the need to adopt high LoM settings, decreasing the risks of maloperation associated with desensitised protections.

Country
Italy
Keywords

Distributed energy resources (DER), Inertial response, RoCoF-sensitive protections, Thermostatically controlled loads (TCLs), Power system dynamic performance

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
gold