
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Probabilistic extension of flexible hybrid state estimation for cyber-physical systems

Abstract This paper proposes a probabilistic extension to flexible hybrid state estimation (FHSE) for cyber-physical systems (CPSs). The main goal of the algorithm is improvement of the system state tracking when realistic communications are taken into account, by optimizing information and communication technology (ICT) usage. These advancements result in: 1) coping with ICT outages and inevitable irregularities (delay, packet drop and bad measurements); 2) determining the optimized state estimation execution frequencies based on expected measurement refresh times. Additionally, information about CPSs is gathered from both the phasor measurement units (PMU) and SCADA-based measurements. This measurement transfer introduces two network observability types, which split the system into observable (White) and unobservable (Grey) areas, based on 1) deployed measuring instruments (MIs) and 2) received measurements. A two-step bad data detection (BDD) method is introduced for ICT irregularities and outages. The proposed algorithm benefits are shown on two IEEE test cases with time-varying load/generation: 14-bus and 300-bus.
- University of Kragujevac Serbia
- Tufts University United States
- University of Niš Serbia
- University of Belgrade, Faculty of Philosophy Serbia
- Brigham Young University Idaho United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
