Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VBN
Article . 2021
Data sources: VBN
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Electrical Power & Energy Systems
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An equivalent model for sub-synchronous oscillation analysis in direct-drive wind farms with VSC-HVDC systems

Authors: Shao, Bingbing; Zhao, Shuqiang; Gao, Benfeng; Yang, Yongheng; Blaabjerg, Frede;

An equivalent model for sub-synchronous oscillation analysis in direct-drive wind farms with VSC-HVDC systems

Abstract

Abstract Field experiences have shown that sub-synchronous oscillation (SSO) can occur in direct-drive wind farms with VSC-HVDC systems. Due to the complexity of the detailed wind farm model, a dynamic equivalent model, with a reasonable order reduction of the detailed model and still reflecting inside-wind-farm and wind-farm-grid SSO characteristics is essential. In this paper, based on the principle that similar matrices have identical eigenvalues, the SSO analysis of an N-machine wind farm with VSC-HVDC system is conducted by simplifying it into two single-machine systems. The modeling method of the two single-machine systems is presented. Four case studies are presented to verify the effectiveness of the proposed model when compared with the detailed model in various scenarios. The proposed model is also benchmarked with the output multiplication-based equivalent model (OMM). Comparison results show that although the system order is reduced significantly, the proposed simplified equivalent model can still reflect inside-wind-farm and wind-farm-grid SSO modes in various scenarios. Meanwhile, the rationality of the OMM in terms of the wind-farm-grid SSO analysis is verified theoretically.

Country
Denmark
Related Organizations
Keywords

VSC-HVDC, Equivalent model, Direct-drive permanent magnetic synchronous generator, Sub-synchronous oscillation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Top 10%
gold