Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VBN
Article . 2021
Data sources: VBN
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Electrical Power & Energy Systems
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comprehensive power flow modelling of hierarchically controlled AC/DC hybrid islanded microgrids

Authors: Agundis Tinajero, Gibran David; Nasir, Mashood; Vasquez, Juan C.; Guerrero, Josep M.;

Comprehensive power flow modelling of hierarchically controlled AC/DC hybrid islanded microgrids

Abstract

This paper presents the power flow modelling for AC/DC hybrid islanded microgrids including droop-controlled distributed generation units, secondary frequency and voltage restoration control for the AC side of the microgrid, and secondary voltage restoration control for the DC side of the microgrid. The interlink converter between the AC and DC microgrids includes a frequency-voltage droop control, and considers the effect of the secondary control for the AC microgrid side. Two case studies are presented for the power flow model evaluation, in the first case a microgrid with linear loads and equal droop characteristic for the distributed generation units are used; in the second case, voltage dependent loads for both AC and DC microgrids are included, and different droop characteristic are chosen for each distributed generation unit. Comparisons between the power flow solutions through the proposed modelling and the professional simulator MATLAB/Simulink are presented. Additionally, the computational speed and convergence rate of the power flow method are shown. The obtained results corroborate the reliability and effectiveness of the proposed power flow modeling to represent the controlled AC/DC hybrid microgrid including hierarchical controllers.

Country
Denmark
Keywords

Hierarchical control, Power flow, AC/DC hybrid microgrid, Newton–Raphson method

Powered by OpenAIRE graph
Found an issue? Give us feedback