Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Electrical Power & Energy Systems
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Co-ordinated grid forming control of AC-side-connected energy storage systems for converter-interfaced generation

Authors: orcid Chen, Junru;
Chen, Junru
ORCID
Harvested from ORCID Public Data File

Chen, Junru in OpenAIRE
Liu, Muyang; Guo, Renqi; Zhao, Nan; orcid Milano, Federico;
Milano, Federico
ORCID
Harvested from ORCID Public Data File

Milano, Federico in OpenAIRE
O'Donnell, Terence;

Co-ordinated grid forming control of AC-side-connected energy storage systems for converter-interfaced generation

Abstract

Abstract Grid forming control of converter interfaced generation (CIG) requires some form of energy storage to be coupled with the generation. Energy storage systems (ESSs) can be coupled to the CIG either on the DC or the AC side of the power converter. When placed on the DC side, the ESS can provide damping of the variability in the generation but would require significant modification to the wind turbine hardware. The solution with an ESS connected to the AC side is simpler to implement with existing wind turbines but fails to provide damping of the CIG generation. This paper proposes a grid forming control strategy, based on virtual synchronous generator (VSG) control, which allows the ESS installed at the AC-side of the converter to have the same features and dynamic behaviour as those obtained from placement on the DC-side of the converter. In addition, the proposed control can also limit the exchanged power of the ESS within its rating for a safe operation. The proposed control is validated via a detailed Electro-Magnetic Transient (EMT) model and its impact on the grid is quantified via the case study of the All-Island Irish transmission system. Simulation results show that only a small ESS capacity can ensure that the frequency variance satisfies the grid code requirement even in the situation of a very high CIG penetration.

Country
United Kingdom
Related Organizations
Keywords

600

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Top 10%
gold
Upload OA version
Are you the author? Do you have the OA version of this publication?