Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Istanbul Ticaret Uni...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Electrical Power & Energy Systems
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
http://dx.doi.org/10.1016/j.ij...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep learning-based cyber resilient dynamic line rating forecasting

Authors: Moradzadeh, Arash; Mohammadpourfard, Mostafa; Genc, Istemihan; Şeker, Şahin Serhat; Mohammadi-Ivatloo, Behnam;

Deep learning-based cyber resilient dynamic line rating forecasting

Abstract

Increased integration of renewable energy resources into the grid may create new difficulties for ensuring a sustainable power grid which drives electric utilities to use a number of cost-effective techniques such as Dynamic line rating (DLR) that enable them to run power networks more efficiently and reliably. DLR forecasting is a technique devised to accurately forecast the maximum current carrying capacity of overhead transmission lines. DLR offers many advantages, including increased renewable energy penetration without system reinforcement, improved grid dependability, and lower congestion costs. So far, many solutions have been proposed for DLR forecasting, which, despite estimating the exact capacity of the DLR, have some problems, such as installing multiple sensors and measurement devices and communication networks with precise calibration, and also neglect cyberattacks which may lead to operators making inappropriate operational choices. To address these issues, in this paper, a novel hybrid deep learning-based DLR forecasting approach called the autoencoder bidirectional long short-term memory (AE-BiLSTM) is efficiently and precisely developed. Several scenarios were developed to test the robustness and accuracy of the proposed methodology using real-world data with and without cyber-attacks. Detection of cyber-attack is done based on the increase in the least square errors of forecasting models. Then, the carefully designed hybrid AE-BiLSTM method reconstructs the falsified measurement data and provides reliable DLR forecasting. Also, a comparative study is carried out. The numerical results demonstrated that the proposed hybrid approach can significantly provide acceptable performance even under cyber-attacks and forecast DLR values with the least possible error, outperforming the existing conventional and deep learning-based techniques.

Country
Turkey
Keywords

Dynamic line rating Forecasting Data integrity attack Deep learning Bidirectional long short-term memory Autoencoder

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
Green
gold