Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Electrical Power & Energy Systems
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantifying frequency containment reserve using cross-entropy frequency-constrained contingency-state-analysis model

Authors: Yiping Yuan; Zhou Liu; Zhe Chen; Kim Hoej Jensen; Marjan Popov;

Quantifying frequency containment reserve using cross-entropy frequency-constrained contingency-state-analysis model

Abstract

With the increasing penetration of converter-interfaced generators, the frequency containment reserve (FCR) from conventional generators keeps going down, leading to a potential risk of frequency instability under contingencies. Consequently, Converter-interfaced generators are required to provide FCR and participate in the corrective rescheduling. Nevertheless, how to assess the FCR and quantify the adequacy of FCR under contingencies is a big challenge in modern new power system. To address this challenge, a cross-entropy-based frequency-constrained contingency-state-analysis (FC-CSA) model is proposed in this paper. Notably, both frequency control (FC) of units (i.e., conventional synchronous generators and converter-interfaced generators), and under frequency load shedding (UFLS) are incorporated in the primary frequency response. Then a unified system frequency response (SFR) function representing frequency dynamic is derived. This SFR function is extracted and reformulated as a group of mixed-integer linear constraints and participates in the traditional CSA model. Moreover, a set of frequency dynamic indexes, i.e., Expectation of UFLS risk, Expectation of FCR from conventional and converter-interfaced generators, is extended to depict the FCR that the power system requires. These indexes are calculated by the FC-CSA in a cross-entropy-based monte carlo simulation (CE-MCs). Case studies on a modified IEEE 6-bus test system and IEEE 118-bus test system are carried out to demonstrate the effectiveness of the proposed FC-CSA model. ; Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. ; Intelligent Electrical Power Grids

Country
Netherlands
Related Organizations
Keywords

Frequency Containment Reserve, Under-frequency Load Shedding, Cross-Entropy-based Monte Carlo simulation, 600, Frequency Control, Contingency-State-Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 25
    download downloads 15
  • 25
    views
    15
    downloads
    Data sourceViewsDownloads
    TU Delft Repository2515
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
25
15
Green
gold