Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Electrical Power & Energy Systems
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Probabilistic machine learning aided transformer lifetime prediction framework for wind energy systems

Authors: Jose I. Aizpurua; Rafael Peña-Alzola; Jon Olano; Ibai Ramirez; Iker Lasa; Luis del Rio; Tomislav Dragicevic;

Probabilistic machine learning aided transformer lifetime prediction framework for wind energy systems

Abstract

Accurate lifetime prediction of transformers operated in power grids with renewable energy systems is a challenging task because it requires a large amount of data that is not usually available. In the case of wind energy, this complexity is intensified with the stochastic ageing process influenced by the intermittency of the wind and weather conditions. Existing models make use of detailed power topologies to evaluate transformer stress profiles and associated degradation. However, this modelling approach requires high computational resources and long simulation times. In this context, this paper presents a lifetime prediction model for transformers designed through probabilistic machine learning, thermal modelling and ageing analysis. The proposed model is compared with synthetic wind-to-power detailed simulations of a wind farm and validated with real data. The lifetime prediction is evaluated with different mission profile estimates and results show that the accuracy of the probabilistic machine learning model is very high, with an error of 0.47% for the median value and 80% prediction interval errors within 6%–7% with respect to observations. Moreover, there is a substantial reduction in the simulation time and memory requirements when compared to the synthetic model. A detailed sensitivity analysis demonstrates the influence on transformer ageing of different overloading strategies, thermal constants and the geographic location of the wind farm.

Country
Denmark
Keywords

Transformer, Machine learning, Reliability, Surrogate modelling, Power curve, Wind energy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Top 10%
Green
gold