
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Probabilistic machine learning aided transformer lifetime prediction framework for wind energy systems

Accurate lifetime prediction of transformers operated in power grids with renewable energy systems is a challenging task because it requires a large amount of data that is not usually available. In the case of wind energy, this complexity is intensified with the stochastic ageing process influenced by the intermittency of the wind and weather conditions. Existing models make use of detailed power topologies to evaluate transformer stress profiles and associated degradation. However, this modelling approach requires high computational resources and long simulation times. In this context, this paper presents a lifetime prediction model for transformers designed through probabilistic machine learning, thermal modelling and ageing analysis. The proposed model is compared with synthetic wind-to-power detailed simulations of a wind farm and validated with real data. The lifetime prediction is evaluated with different mission profile estimates and results show that the accuracy of the probabilistic machine learning model is very high, with an error of 0.47% for the median value and 80% prediction interval errors within 6%–7% with respect to observations. Moreover, there is a substantial reduction in the simulation time and memory requirements when compared to the synthetic model. A detailed sensitivity analysis demonstrates the influence on transformer ageing of different overloading strategies, thermal constants and the geographic location of the wind farm.
- Mondragon University Spain
- Ikerbasque Spain
- University of Strathclyde United Kingdom
- Mondragon University Spain
- Technical University of Denmark Denmark
Transformer, Machine learning, Reliability, Surrogate modelling, Power curve, Wind energy
Transformer, Machine learning, Reliability, Surrogate modelling, Power curve, Wind energy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
