Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Electrical Power & Energy Systems
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aaltodoc Publication Archive
Article . 2025 . Peer-reviewed
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mobile base station site as a virtual power plant for grid stability

Authors: Laimio, Jussi; Keski-Heikkilä, Mika; Pärssinen, Matti; Lahti, Roope; Salmela, Olli; Volkov, Topi; Collin, Jari; +3 Authors

Mobile base station site as a virtual power plant for grid stability

Abstract

Energy grids and markets are in transition. Increased use of renewable energy sources (RES) introduces new stability challenges for power grids. Despite the substantial electrical consumption of mobile networks, they are yet to harness their inherent flexibility for aiding in the stability of the power grid. A noticeable research gap exists concerning measuring full activation time for fast frequency reserve (FFR) product while using batteries from mobile network base stations. Our objective is to demonstrate that mobile operators could use their existing infrastructure to participate in the reserve market of a contemporary power grid. Furthermore, it seeks to determine if the full activation time can meet the requirements of an FFR product. The system consists of a live mobile base station site with a mobile connection to the site, local controller, an existing battery, and a power system that, in combination, can function as part of a power grid balancing system. Our main finding indicates that the rectifier reaction time within an installed base station site infrastructure ranges from 5 to 8 s, and the time when the base station is entirely off from the grid varies from 7 to 10 s. This finding is significant since the activation time is too long for the base station power system controller to be used for FFR. The required full activation time for FFR is less than 1.3 s. In conclusion, power system vendors should investigate improvements for their equipment and software products to enable fast reserve market entry for their existing customers and stay competitive.

Country
Finland
Related Organizations
Keywords

Fast Frequency Reserve, TK1001-1841, Distributed Energy Resources, Battery backup, Power grid, Production of electric energy or power. Powerplants. Central stations, Virtual power plant, Mobile Networks, Reserve products

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold