
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Addressing intra-area oscillations and frequency stability after DC segmentation of a large AC power system

Addressing intra-area oscillations and frequency stability after DC segmentation of a large AC power system
In the last decades, various events have shown that electromechanical oscillations are a major concern for large interconnected Alternating Current (AC) power systems. Segmentation of AC power systems with High Voltage Direct Current (HVDC) systems (DC segmentation, for short) is a method that consists in turning large AC grids into a set of asynchronous AC clusters linked by HVDC links. It is a promising solution to mitigate electromechanical oscillations and other issues. In particular, an appropriately placed DC segmentation can stop a selected inter-area electromechanical oscillation mode. However, without supplementary controllers, DC segmentation will not contribute to the damping of the intra-area oscillation modes in the remaining AC clusters and will deteriorate the frequency stability of the power system. This paper aims at filling this gap and proposes the use of DC segmentation with HVDC systems based on Voltage Source Converters (VSC-HVDC) with supplementary controllers in the converter stations: (a) active-power supplementary controllers for frequency support among the asynchronous AC clusters and (b) a reactive-power supplementary controllers for Power Oscillation Damping (POD-Q), in order to damp the intra-area oscillation modes. The proposed supplementary controllers and their design will be presented, and their efficiency will be demonstrated on the Nordic 44 test system with DC segmentation by means of non-linear time-domain simulation and small-signal stability analysis.
arXiv admin note: text overlap with arXiv:2302.09931
VSC-HVDC, TK1001-1841, Production of electric energy or power. Powerplants. Central stations, Voltage source converter, Power-oscillation damping, FOS: Electrical engineering, electronic engineering, information engineering, HVAC/HVDC, DC segmentation, Systems and Control (eess.SY), Power system stability, Electrical Engineering and Systems Science - Systems and Control
VSC-HVDC, TK1001-1841, Production of electric energy or power. Powerplants. Central stations, Voltage source converter, Power-oscillation damping, FOS: Electrical engineering, electronic engineering, information engineering, HVAC/HVDC, DC segmentation, Systems and Control (eess.SY), Power system stability, Electrical Engineering and Systems Science - Systems and Control
1 Research products, page 1 of 1
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
