Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Electrical Power & Energy Systems
Article . 2025 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient optimal power flow learning: A deep reinforcement learning with physics-driven critic model

Authors: Ahmed Sayed; Khaled Al Jaafari; Xian Zhang; Hatem Zeineldin; Ahmed Al-Durra; Guibin Wang; Ehab Elsaadany;

Efficient optimal power flow learning: A deep reinforcement learning with physics-driven critic model

Abstract

The transition to decarbonized energy systems presents significant operational challenges due to increased uncertainties and complex dynamics. Deep reinforcement learning (DRL) has emerged as a powerful tool for optimizing power system operations. However, most existing DRL approaches rely on approximated data-driven critic networks, requiring numerous risky interactions to explore the environment and often facing estimation errors. To address these limitations, this paper proposes an efficient DRL algorithm with a physics-driven critic model, namely a differentiable holomorphic embedding load flow model (D-HELM). This approach enables accurate policy gradient computation through a differentiable loss function based on system states of realized uncertainties, simplifying both the replay buffer and the learning process. By leveraging continuation power flow principles, D-HELM ensures operable, feasible solutions while accelerating gradient steps through simple matrix operations. Simulation results across various test systems demonstrate the computational superiority of the proposed approach, outperforming state-of-the-art DRL algorithms during training and model-based solvers in online operations. This work represents a potential breakthrough in real-time energy system operations, with extensions to security-constrained decision-making, voltage control, unit commitment, and multi-energy systems.

Keywords

Deep reinforcement learning, Operable power flow, TK1001-1841, Production of electric energy or power. Powerplants. Central stations, Physics-driven policy gradient, Holomorphic embedding, Real-time economic control

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research