Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Electrical Power & Energy Systems
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ai-powered digital twin in the industrial IoT

Authors: Željko Bolbotinović; Saša D. Milić; Žarko Janda; Dragan Vukmirović;

Ai-powered digital twin in the industrial IoT

Abstract

The rapid emergence of the smart industry hides numerous challenges that need to be addressed promptly. In the transition between two industrial eras (Industry 4.0 and Industry 5.0), hands-on applications of digital twins in intelligent manufacturing are pivotal in enhancing efficiency, optimizing operations, and ensuring sustainability. The paper presents the digital twin (DT) concept in a vertical Industrial Internet of Things (IIoT) framework powered by machine learning (ML) models for time series forecasting. According to DT needs and hierarchical data processing, as well as edge, fog, and cloud computing, the paper presents state-of-the-art ML models and algorithms. Real-time and low-latency requirements of smart edge devices and monitoring systems force the selection of DT models powered by ML models for time series processing and forecasting. Stronger computer resources characterize the IIoT fog level. At this level, DT models should be supported by techniques and methods for parameter selection, correlation analysis, and heatmap visualization that facilitates time series processing. Special attention is devoted to developing a novel multivariate-time-series prediction method. This method should enable parameter prediction which cannot be directly measured. The method was validated based on several real-time series.

Keywords

TK1001-1841, Time series, Production of electric energy or power. Powerplants. Central stations, Machine learning, Long short-term memory, Convolutional neural network, Gated recurrent unit, Digital twin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research