Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Thermofluids
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Annual comparative performance of direct expansion solar-assisted and air-source heat pumps for residential water heating

Authors: Sahar Ghasemipour; Mohammad Sameti; Manoj Kumar Sharma;

Annual comparative performance of direct expansion solar-assisted and air-source heat pumps for residential water heating

Abstract

In this paper, an annual comparative analysis for the coefficient of performance (COP) and the energy consumption are presented for two direct expansion heat-pump water heating systems: solar-assisted heat pump, and air-source heat pump. Two main research questions are addressed: (1) How does each system's performance differ from the other system under the same conditions? and (2) How does the climate affect the performance of an individual system to help the designer choose the more energy efficient water heater for a specific location? To make those water heaters comparable, all design parameters for both heat pumps are assumed to be the same with identical components. A sensitivity analysis is also carried out for various factors such as irradiance, ambient temperature, collector/evaporator area, wind speed, and compressor rotational speed considering three different hot water tank temperatures. The results for both heat pump water heating systems show that the climate (different months) plays the key role on the annual performance. Changes in irradiance and ambient temperature as well as the wind speed throughout the year can increase the COP by up to 33 % (from 2.1 to 2.8) under certain conditions for the case study with moderate weather. Therefore, the benefits from the local weather should be investigated before choosing the design variables and proper source (solar thermal, air) for the heat pump. Nearly the same results were obtained for both type of water heaters with slightly better performance of air heat pump in colder months of the year (December to February).

Related Organizations
Keywords

Heat pump, Energy consumption, Direct expansion, QC251-338.5, Water heating, Heat

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
gold