
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Heat transfer model analysis of fractional Jeffery-type hybrid nanofluid dripping through a poured microchannel

This study investigates the impact of coupled heat and mass transfer on the peristaltic migration of a magnetohydrodynamic (MHD) stress-strain Jeffery-type hybrid nanofluid flowing through an inclined asymmetric micro-channel with a porous medium. The fundamental two-dimensional momentum and energy transport equations are simplified under the assumptions of long wavelength and low Reynolds number. To solve the momentum and heat transfer problems, two advanced fractional derivative approaches are employed: the fractal integral and the Prabhakar fractional derivative. The pressure difference is determined using numerical integration techniques, such as the Stehfest and Tzou's algorithms. The results are presented through graphs and tables, which illustrate the effects of various parameters on the velocity, heat transfer, and trapping phenomena. As a result, we concluded that, pressure gradients grow with higher Reynolds numbers and channel-inclined angles. The heat transfer rate is observed to decrease as the Darcy number and the orientation of the electromagnetic field increase. When comparing the fractional derivative approaches, the fractal operator exhibits a more significant impact on the momentum profiles compared to the Prabhakar fractional operator. This difference is attributed to the distinct characteristics of the integral kernels associated with each fractional derivative definition. Furthermore, when comparing hybrid nanofluids, water-based (H2O + Ag + TiO2) hybrid fluids have a somewhat more significant effect than (C6H9NaO7 + Ag + TiO2) hybrid nanofluids.
- University of Debrecen Hungary
- University of Bisha Saudi Arabia
- Zagazig University Egypt
- Prince Sattam Bin Abdulaziz University Saudi Arabia
- University of Debrecen Hungary
Numerical algorithms, Micro-channel, Hybrid nanofluid, Mittag-Leffler, QC251-338.5, Heat, Generalized Couette flow, Comparative study
Numerical algorithms, Micro-channel, Hybrid nanofluid, Mittag-Leffler, QC251-338.5, Heat, Generalized Couette flow, Comparative study
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
