
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Chemical-looping combustion and chemical-looping reforming of kerosene in a circulating fluidized-bed 300W laboratory reactor

Abstract The reaction between a nickel-based oxygen carrier and a liquid fuel has been demonstrated in a chemical-looping reactor with continuous particle circulating. An injection system was constructed, in which sulfur-free kerosene was evaporated, mixed with superheated steam and fed directly into the lab scale chemical-looping reactor. A nickel-based oxygen carrier composed of 40 wt% NiO and 60 wt% MgO–ZrO 2 was used for both chemical-looping combustion (CLC) and chemical-looping reforming (CLR) experiments, which were performed for about 34 h and 20 h, respectively. For the CLC experiments, 95–99% of the fuel carbon was converted to CO 2 and only a minute amount of hydrocarbons was detected in the off-gas. For the CLR experiments, synthesis gas was produced with concentrations of hydrocarbons as low as 0.01%. The particles were analyzed before and after the experiments using XRD, SEM, BET surface area and particle size distribution. It was shown that it is possible to use liquid fuel in a continuous chemical-looping process and also achieve nearly complete fuel conversion. With a nickel-based oxygen carrier virtually all hydrocarbon could be fully oxidized.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).62 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
