Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao RE.PUBLIC@POLIMI Res...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Greenhouse Gas Control
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of a new technology for carbon dioxide submarine storage in glass capsules

Authors: CASERINI, STEFANO; DOLCI, GIOVANNI; AZZELLINO, ARIANNA; LANFREDI, CATERINA; RIGAMONTI, LUCIA; Barreto, B.; GROSSO, MARIO;

Evaluation of a new technology for carbon dioxide submarine storage in glass capsules

Abstract

Abstract The paper describes the energy and environmental evaluation of a new patented process for the storage of liquid carbon dioxide (CO2) in glass capsules on the deep seabed. This technology is proposed as a safe option to store CO2 captured from flue gas of industrial processes and power plants, as well as directly from the atmosphere, in order to overcome the obstacles that still today limit the commercial deployment of other CO2 storage techniques, such as the injection in saline aquifers. By keeping the liquid CO2 separated from the seawater, the technology might be an alternative that presents reduced risk associated with the storage in the marine environment when compared to other alternatives proposed in the past. A Life Cycle Assessment carried out with different combinations of the geographical and technological parameters showed an average impact of 0.10 tCO2eq per ton of stored CO2. The process with the highest impact was the capsule production, due mainly to the consumption of natural gas and electricity, as well as to calcination taking place during the production of glass. The availability of space in the seabed for submarine CO2 storage in capsules resulted a minor issue for the development of the technology. Close to most coastal areas where CO2 emission sources are located, large surfaces of the seabed at a suitable depth (between 1500 and 3000 m) and distance from the coast (

Country
Italy
Keywords

Carbon sequestration, 660, 600, Emission reduction, Life cycle assessment, CO2 storage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%