Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Greenhouse Gas Control
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parametric study of a novel cryogenic-membrane hybrid system for efficient CO2 separation

Authors: Yutaka Kitamura; Na Ji; Sun Yawei; Qingling Liu; Chunfeng Song; Zhichao Fan;

Parametric study of a novel cryogenic-membrane hybrid system for efficient CO2 separation

Abstract

Abstract Polyimide hollow fiber membrane module has been tested under low temperature for efficient CO2 separation. Parametric study was carried out to evaluate separation performance of the designed cryogenic-membrane hybrid system. In detail, the effect of stage cut, feed pressure, operating temperature and CO2 concentration on gas permeance, CO2/N2 selectivity, CO2 purity and recovery were investigated. The experimental results indicated that operating temperature played an important role in the separation performance. Reducing stage cut would result in the increase of permeance (up to 302 GPU), CO2/N2 selectivity (up to 20) and CO2 purity (up to 59%), especially under the low temperature (−20 °C). The variation of gas permeance depended on the competition between the compression and swelling effect of the free volume. When the operating temperature and feed pressure were set at −20 °C and 700 kPa, the CO2 recovery could be improved to 93%. Although the permeance, CO2/N2 selectivity and recovery adversely decreased with the increase of feed CO2 concentration, the CO2 purity could be increased to 40% with the feed pressure of 400 kPa. The cryogenic-membrane hybrid system presented a potential in enhancing the CO2 removal efficiency.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%