Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ KITopen (Karlsruhe I...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Heat and Fluid Flow
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Secondary flow and heat transfer in turbulent flow over streamwise ridges

Authors: Stroh, A.; Schäfer, K.; Forooghi, P.; Frohnapfel, B.;

Secondary flow and heat transfer in turbulent flow over streamwise ridges

Abstract

Abstract Surface structuring in form of streamwise-aligned triangular ridges is investigated in the framework of a fully developed turbulent channel flow with constant wall temperatures of different values prescribed on the upper and lower walls at Re b = 18000 . Two arrangements of the ridges on both channel walls are considered – a symmetrical arrangement and a staggered arrangement with a spanwise shift of the upper wall structure by a half ridge separation. The ridges generate a strong large-scale secondary motion and hence enhance momentum and heat transfer in the channel by approximately 30% relatively to the smooth channel. In spite of the fact that both arrangements translate into very similar global flow properties, the composition of skin friction coefficient and Stanton number significantly differs. The componental split-up of the friction coefficient reveals that the enhancement of momentum transfer mainly originates from the dispersive component linked to the secondary flows. For the Stanton number, however, the enhancement arises not only from the dispersive component, but also from a strong modification of the turbulent flow properties.

Country
Germany
Related Organizations
Keywords

ddc:620, Engineering & allied operations, info:eu-repo/classification/ddc/620, 620

Powered by OpenAIRE graph
Found an issue? Give us feedback