Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Heat and Mass Transfer
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental validation of a CFD and an ε-NTU model for a large tube-in-tank PCM system

Authors: N.H.S. Tay; Frank Bruno; Martin Belusko;

Experimental validation of a CFD and an ε-NTU model for a large tube-in-tank PCM system

Abstract

Abstract An experimental validation for a computational fluid dynamics (CFD) and an effectiveness-number of transfer units (e-NTU) model for tubes in a large phase change material (PCM) tank has been conducted. The inlet and outlet heat transfer fluid (HTF) temperatures as well as twelve temperature locations in the PCM tank were compared with the CFD results. The average effectiveness of the phase change process of each experimental point was also compared with results from the CFD as well as the e-NTU models. From this study, it was concluded that the CFD model and the e-NTU model developed can accurately predict the behaviour of the thermal storage system during the freezing process. There are however, discrepancies in the melting process due to the exclusion of the effect of natural convection in the models. Using the experimental results, an effective thermal conductivity has been determined to account for buoyancy for various distances of tubes. The paper gives details of the CFD model of the phase change thermal storage system, and presents results from the CFD model, experiments and e-NTU model.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 1%
Top 10%
Top 10%
bronze