
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Experimental validation of a CFD and an ε-NTU model for a large tube-in-tank PCM system

Experimental validation of a CFD and an ε-NTU model for a large tube-in-tank PCM system
Abstract An experimental validation for a computational fluid dynamics (CFD) and an effectiveness-number of transfer units (e-NTU) model for tubes in a large phase change material (PCM) tank has been conducted. The inlet and outlet heat transfer fluid (HTF) temperatures as well as twelve temperature locations in the PCM tank were compared with the CFD results. The average effectiveness of the phase change process of each experimental point was also compared with results from the CFD as well as the e-NTU models. From this study, it was concluded that the CFD model and the e-NTU model developed can accurately predict the behaviour of the thermal storage system during the freezing process. There are however, discrepancies in the melting process due to the exclusion of the effect of natural convection in the models. Using the experimental results, an effective thermal conductivity has been determined to account for buoyancy for various distances of tubes. The paper gives details of the CFD model of the phase change thermal storage system, and presents results from the CFD model, experiments and e-NTU model.
- University of South Australia Australia
- University of South Australia Australia
16 Research products, page 1 of 2
- 2017IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 1981IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).71 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
