Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Heat and Mass Transfer
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical study on characteristics of flow and heat transfer in a cooling passage with protrusion-in-dimple surface

Authors: Changmin Son; Jeonggeon Kim; J.H. Doo; Hyun Sik Yoon; Man Yeong Ha;

Numerical study on characteristics of flow and heat transfer in a cooling passage with protrusion-in-dimple surface

Abstract

Abstract The detailed flow structure and heat transfer characteristics in a newly designed heat transfer surface geometry were investigated. The surface geometry proposed is the combination of a conventional dimple cavity with a protrusion structure mounted within it. The underlying design concept of this surface geometry aims to enhance the flow mixing and the corresponding heat transfer in the flow-recirculating region that is generated by a conventional dimple cavity. Four different protrusion heights were considered as the main design parameter of the present study. The numerical simulations were carried out with a Reynolds number of 2800 and Prandtl number of 0.71 (air) corresponding to the mean velocity and channel height. The calculated pressure drop and heat-transfer capacity were assessed in terms of the Fanning friction factor and Colburn j factor. The overall performances, estimated in terms of area goodness factor for several protrusion-in-dimple cases, were higher than that found by a conventional dimple. Compared to the conventional dimple case, the pressure drop and heat-transfer capacity were slightly augmented in the case of a protrusion height of 0.05 since this leads to an improvement in the mixing of the turbulent flow in the dimple cavity.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%