Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Heat and Mass Transfer
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On mechanisms and models of multi-component gas diffusion in porous structures of fuel cell electrodes

Authors: Bengt Sundén; Jinliang Yuan;

On mechanisms and models of multi-component gas diffusion in porous structures of fuel cell electrodes

Abstract

Abstract Small scale particles/pores from micrometers and down to nanometers often occur in multi-functional porous electrodes in fuel cells, to enhance the catalytic reaction activities and accordingly the cell performance. Multi-component and -phase mass transport phenomena of reactants and products are strongly coupled with other transport processes as well as various reactions. All these processes form inter-linked circuits for the mass, heat and electricity, which determine electrode design, cell structure/configuration and operation, hence overall performance. Understanding of gas diffusion mechanisms and accurate estimating of the overall diffusion coefficient are essential for the operation and design of fuel cells, especially at high current density conditions. Several intensive research and investigations have appeared in recent years involving both experimental and modeling approaches for porous structure reconstruction and evaluation of effective diffusion coefficients. In this paper, the mass transfer equations commonly used for continuum models at porous-average level are outlined and highlighted, with the purpose to provide a general overview of the validity and the limitation of these approaches. The most often used models in the open literature are reviewed and discussed focusing on the effective gas diffusion coefficients and tortuosity factors. It is revealed that the effects of both small scale (Knudsen number) and tortuous pathways (tortuosity factor) on the effective diffusion coefficients are significant for the specific layers in the electrodes. Summary and suggestions are also provided for better understanding of gas diffusion phenomena and implementation of the effective gas diffusion coefficient models for fuel cell electrodes.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Top 10%
Top 10%
Top 1%