
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Multiscale thermal nonequilibria for record superadiabatic-radiant-burner efficiency: Experiment and analyses

Multiscale thermal nonequilibria for record superadiabatic-radiant-burner efficiency: Experiment and analyses
Abstract A record radiation efficiency of 37% is achieved using a two-layered porous (SiC foam, fine and course) burner using multiscale thermal nonequilibria and effective heat recirculation. The porous burner holds the flame and heats finned SiC rods effectively conducting heat to radiating disks downstream, while the flue gas is intercepted before leaving the disk spacing by a preheater carrying secondary air that mixes upstream with the fuel and primary air. These result in superadiabatic combustion in porous layers and fuel-gas preheating that causes exiting flue gas having a temperature lower than the radiating disks. These orchestrated heat recirculation and preheating extend the lean flammability to 0.24 equivalence ratio, and allow the flue gas temperature to be over 50 K below the radiating disks temperature. A three-dimensional model of the structures with a two-step combustion reaction allow to predict the combustion and emission and related convection, conduction and radiation heat transfer, with excellent agreement with the experiments over wide ranges of fuel flow rate and equivalence ratio.
- Sungkyul University Korea (Republic of)
- University of Nevada Reno United States
- Sungkyul University Korea (Republic of)
- University of Michigan–Flint United States
- Sungkyunkwan University Korea (Republic of)
2 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
