Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Heat and Mass Transfer
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions

Authors: Orlando Lastres; Guillermo Ibáñez; J. Moreira; Joel Pantoja; Aracely López;

Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions

Abstract

Abstract The heat transfer and entropy generation in a magnetohydrodynamic flow of Al 2 O 3 –water nanofluid through a porous vertical microchannel with nonlinear radiative heat flux were investigated numerically. Then, combined effects of nanoparticle volume fraction, hydrodynamic slip, magnetic field, suction/injection and thermal radiation on heat transfer and entropy generation were studied. The dimensionless governing equations were solved numerically by applying Runge–Kutta integration method together with shooting technique. In this study, the accuracy of the numerical results was verified by comparing its predictions with exact solutions of model without both radiation effects and buoyancy force. Here, different from previous literature, heat transfer subject to nonlinear thermal radiation, Joule heating and viscous dissipation was solved and analyzed using conjugate convective-radiative heat transfer on the boundary surfaces. Moreover, influences of pertinent parameters on nanofluid velocity, temperature, local and global entropy generation and Nusselt number were discussed in detail and illustrated graphically. Based on the numerical results, it was proved that the global entropy generation decreased with both nanoparticle volume fraction and suction/injection Reynolds number while it increased with Grashof number (Buoyancy force intensity), radiation parameter and conduction-radiation parameter. In addition, it was possible to determine optimum values of slip flow with minimum values of global entropy generation rate. The Nusselt number was also calculated and explored for different conditions. In this way, optimum values of Grashof number with maximum heat transfer on the heated left plate were derived.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    168
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
168
Top 1%
Top 10%
Top 1%