Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Heat and Mass Transfer
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Equilibrium and kinetics of CO2 adsorption onto activated carbon

Authors: Aref Maalej; Skander Jribi; Skander Jribi; Animesh Pal; M.M. Younes; M.M. Younes; Takahiko Miyazaki; +5 Authors

Equilibrium and kinetics of CO2 adsorption onto activated carbon

Abstract

Abstract Knowledge of adsorption characteristics of adsorbent-adsorbate pairs is essential for designing adsorption beds for adsorption cooling and adsorptive gas capturing applications. We investigated the adsorption isotherms and the adsorption kinetics of CO2 onto microporous activated carbon powder of type Maxsorb III. Measurements were performed with gravimetric apparatus for temperatures from 30 to 70 °C and pressures up to 7 MPa for adsorption isotherms and up to 4 MPa for adsorption kinetics. The gravimetric adsorption data obtained were consistent with previously measured isotherms with volumetric apparatus. Both absolute and excess adsorption data have been fitted precisely with Toth and Dubinin-Astakhov isotherm equations. The classical linear driving force (LDF) model with a constant mass transfer coefficient failed to correlate the experimental adsorption kinetics data. To overcome this problem, the authors presented a modified LDF equation with a variable mass transfer coefficient which is a function of the equilibrium and instantaneous uptakes. This modified LDF equation led to a better fitting and could be implemented easily in simulation of pressure swing adsorption (PSA), temperature swing adsorption (TSA) and adsorption chiller applications.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 1%
Top 10%
Top 1%