Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Heat and Mass Transfer
Article . 2017 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental investigation of heat transfer and second law analysis in a pebble bed channel with internal heat generation

Authors: Meysam Nazari; Davood Jalali Vahid; Rahim Khoshbakhti Saray; Yasser Mahmoudi;

Experimental investigation of heat transfer and second law analysis in a pebble bed channel with internal heat generation

Abstract

Abstract This paper studies experimentally the forced convection heat transfer of turbulent flow in a cylindrical pebble bed channel with internal heat generation. Exergy and entropy generation analyses are performed to optimize energy conversion in the system identify the destruction of exergy in the pebble bed channel. Stainless steel spheres are used in stacked pebble bed channel. Internal heating is generated uniformly by electromagnetic induction heating method in metallic spheres. Dry air is used as the working fluid in the process of cooling of the heated spheres. The experiment is performed for turbulent flow regimes with Reynolds (Red) number (based on the diameter of the spheres) in the range of 920–2570, which is equal to Reynolds (Re) number, based on channel diameter, in the range of 4500–10,000. The effects of different parameters, including spheres diameter (d = 5.5, 6.5 and 7.5 mm), inlet volumetric flow rate ( V ) and internal heat generation (Q) on the forced convection heat transfer, exergy transfer and entropy generation are studied. For second law and exergy analyses, mean exergy transfer Nusselt number (Nue) and entropy generation number (Ns) are investigated. Results show that for a fixed d and Q, the mean exergy transfer Nusselt number (Nue) decreases with the increase of Red number until it becomes zero for a critical Red number. This critical Red number found to be about 1450, 1800 and 2300 for d = 5.5, 6.5 and 7.5 mm, respectively. Further increase in the Red number, decreases Nue to negative values. It is found for spheres with diameter of d = 5.5 mm and for a fixed Q, as Red increases, the entropy generation number Ns increases monotonically. While, for d > 5.5 mm and fixed Q, the entropy generation number (Ns) decreases with the increase of Red number up to a critical Red value that makes Ns to be minimum. Further increase in Red number, increases Ns. It is also found that for Red > 1800, among the sphere diameters studied in this work, balls with highest diameters yield the minimum entropy generation in the system.

Country
United Kingdom
Related Organizations
Keywords

330

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
Green
hybrid