Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Heat and Mass Transfer
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transient forced convection from an infinite cylindrical heat source in a saturated Darcian porous medium

Authors: Conti, Paolo; Testi, Daniele; Grassi, Walter;

Transient forced convection from an infinite cylindrical heat source in a saturated Darcian porous medium

Abstract

Abstract This paper deals with the problem of an infinite cylindrical heat source embedded into a saturated porous medium and subject to a cross-axial Darcian flow. Only forced convection is considered. We derived the transient dimensionless solution through a combined analytical – numerical method consisting of four steps: (a) a preliminary dimensional analysis of the constitutive equations of the problem in order to find the dimensionless groups governing the solution; (b) the identification of the validity range of the model as a function of the just-mentioned dimensionless groups; (c) the numerical resolution of the problem; (d) the synthesis of the numerical results in a general dimensionless form. Specifically, we provide several dimensionless maps of the 2D thermal field evolution for six different orders of magnitude of the Peclet number ( 10 - 3 – 10 2 ) . The evolution of the temperature of the heat source is fully illustrated and discussed through plain dimensionless criteria. Then, we discuss the time, space and fluid velocity scales in which the solution is practically equivalent to the ones given by a linear heat source and a purely conductive model. We conclude that the present model has to be employed to evaluate the temperature in proximity of the heat source when the reference Peclet number is greater than 0.5. On the contrary, the linear model can be successfully used for radial distances 5–10 times greater that the heat source radius, depending on the reference Peclet number.

Country
Italy
Keywords

Cylindrical heat source; Darcy's law; Finite volume numerical method; Porous media; Transient solution; Condensed Matter Physics; Mechanical Engineering; Fluid Flow and Transfer Processes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%