
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Mixed convective heat transfer in an enclosure containing a heat-generating porous bed under the influence of bottom injection

Abstract The present study numerically models the process of heat removal from a heat-generating porous bed with cold fluid injection from the bottom of the bed. This type of situation is encountered during post-accident situations in nuclear reactors and involves augmentation of heat removal capacity with forced coolant injection from the bottom. A steady-state analysis is carried out with the assumption of laminar flow regime and without accounting for phase change. Darcy-Brinkmann-Forchheimer approximation and local thermal equilibrium assumption are adopted for modelling the momentum and energy equations in porous media, respectively. It is observed that the fluid flow is determined based on the dominancy of the two co-existing flow mechanisms viz. inertial flow due to forced fluid injection and buoyancy-driven flow due to heat generation within the porous bed. In addition, permeability of the porous media significantly affects the flow mechanism, especially near the fluid inlet. Heat transfer characteristics closely follow the flow mechanism established within the enclosure.
- Jadavpur University India
- Jadavpur University India
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
