
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A simplified energy dissipation based model of heat transfer for post-dryout flow boiling

Abstract A model for post dryout mist flow heat transfer is presented based on considerations of energy dissipation in the flow. The model is an extension of authors own model developed earlier for saturated and subcooled flow boiling. In the former version of the model the heat transfer coefficient for the liquid single-phase convection as a reference was used, due to the lack of the appropriate model for heat transfer coefficient for the mist flow boiling. That issue was a fundamental weakness of the former approach. The purpose of present investigation is to fulfil this drawback. Now the reference heat transfer coefficient for the saturated flow boiling is that corresponding to vapour flow the end of the mist flow. The wall heat flux is based on partitioning and constitutes of two principal components, namely the convective heat flux for vapour flowing close to the wall and two phase flow droplet–vapour in the core flowing. Both terms are accordingly modelled. The results of calculations have been compared with some experimental correlations from literature showing a good consistency.
- Gdańsk University of Technology Poland
- Polish Academy of Sciences Poland
- Institute of Fluid Flow Machinery Poland
- Polish Academy of Learning Poland
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
