
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Entropy production diagnostic analysis of energy consumption for cavitation flow in a two-stage LNG cryogenic submerged pump

Abstract The Liquefied natural gas (LNG) cryogenic submerged pump, the core power equipment for the transportation of liquefied natural gas, is prone to cavitation. However, based on the traditional analysis of the pressure drop, the irreversible loss after cavitation can barely be displayed quantitatively. To solve this problem, an entropy production diagnostic model (EPDM) by the contribution of viscous entropy production (VEP), turbulent entropy production (TEP) and wall entropy production (WEP) for the cavitation flow was established to calculate the energy loss. The cryogenic cavitation model and proposed EPDM were proved to be reliable after comparing results with Hord’s experiment in an ogive and cavitation experiment in a centrifugal pump. Then, by studying the total entropy production, it was found that the EPDM could well predict the occurrence of the critical cavitation and the deterioration of cavitation. When compared with TEP and WEP, the effect of VEP is negligible. As the cavitation area expands from the suction surface of inducer (id) to the first-stage impeller (impA), the cavitation process can be divided into three stages and the total energy loss increases significantly from the first stage to the third one. Through the global distribution of energy loss, it was found that the faster growth of the loss in the second-stage impeller (impB) and the second-stage guide vane (gvB), not in id and impA, contributes more to the energy loss after cavitation. Finally, from the variation of ratio of TEP to WEP, it reveals that cavitation has a greater effect on the WEP rate for the impB, but the turbulent viscous dissipation is still dominant, while the eddy dissipation and resistance loss in gvB with the evolution of cavitation are both crucial.
- Chinese Academy of Sciences China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Chinese Academy of Sciences United States
- China University of Petroleum, Beijing China (People's Republic of)
- China University of Petroleum, Beijing China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).134 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
