Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Heat and Mass Transfer
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical investigation on flashing jet behaviors of single-hole GDI injector

Authors: Hongming Xu; Hongming Xu; Bo Wang; Yanfei Li; Hengjie Guo; Huiqiang Zhang;

Numerical investigation on flashing jet behaviors of single-hole GDI injector

Abstract

Abstract In this paper, n-hexane flashing jets discharged from a single-hole gasoline direct injector (GDI) were studied numerically with the adoption of diffuse Eulerian framework and the homogeneous relaxation model (HRM). The fuel temperature ranged from 30 to 130 °C, and the ambient pressure varied from 20 to 101 kPa. The results showed that considerable vaporization started at the counter bore and a liquid core existed near the nozzle exit. Due to drastic vaporization, the pressure within the liquid core increased so the two-phase flow became under-expanded. Violent expansion then occurred and a low-pressure region was formed, which is believed as the origin of the spray collapse under flashing conditions for multi-hole GDI injectors. At high superheat levels, shock wave structures similar to those in highly under-expanded gaseous jets were identified. However, the transonic position located at some distances from the nozzle rather than at the throttle. Besides, vapor fraction played the dominant role in the onset of expansion, while the expansion was ended by the pressure difference between the two sides of the Mach disk.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 1%
Top 10%
Top 1%