
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Wettability effect on pool boiling heat transfer using a multiscale copper foam surface

Abstract To improve thermal performance, the wettability effect on pool boiling heat transfer using copper foam is experimentally studied. A surface oxidation and chemical modification method is employed to modify copper foam surface’s wettability. After wettability treatment, the copper foam surface is covered with nanosheet. The average contact angle on 50 PPI super-hydrophobic and super-hydrophilic copper foam surface is 148.7° and nearly 0°, respectively. An experimental platform regarding the thermal performance of subcooled pool boiling heat transfer for deionized water on copper foam with a modified wettability surface is conducted. Results showed that the super-hydrophilic copper foam’s surface achieves better boiling heat transfer performance in a medium- or high-heat flux region (q ≥ 20 W⋅cm−2), while super hydrophobic copper foam surface shows a better performance when q
- University of Tokyo Japan
- Southeast University China (People's Republic of)
- Southeast University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).90 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
