Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Heat and Mass Transfer
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical study of melting performance enhancement for PCM in an annular enclosure with internal-external fins and metal foams

Authors: Zhao C.; Opolot M.; Liu M.; Bruno F.; Mancin S.; Hooman K.;

Numerical study of melting performance enhancement for PCM in an annular enclosure with internal-external fins and metal foams

Abstract

Abstract Application of different heat transfer augmentation techniques, including the use of fins or foams, were investigated to enhance the melting rate of a solid phase change material within an annulus where the inner and outer pipes were subjected to constant wall temperature. The carbon fibre fins as well as three commonly-used foams (made of three different materials: nickel, aluminium and copper) were simulated. Firstly, keeping the total fin volume constant, the fin number density effect on the melting rate was investigated. After an optimal fin number density was obtained, three possible strategies (unequal length, uneven intervals and tree-shaped fins) were explored aimed at a more comprehensive understanding of the induced heat transfer enhancement. It was observed that with a fixed fin thickness and volume, the melting time is not a monotonic function of the fin number density and can be optimized. Comparing pure PCM melting, the use of optimized fin number reduced over 60% of melting time, while additional 8% and 4% further time reduction could be achieved by appropriately increasing lengths and decreasing intervals of bottom fins, respectively. The use of tree-like fins resulted in a longer melting time, comparing to that of longitudinal straight fins, which indicates it is not always a good option. Finally, the results, primarily the melting rates, were compared with those obtained through the use of metal foams with different metals. It was observed that the melting time of optimized strategy-1 is rather less than those of Cu and Al foams, and approximately 2200s shorter than that of Ni foams. These results indicate that the fins, if designed properly, can be as efficient as foams.

Countries
Australia, Italy
Keywords

Fin; Melting enhancement; Metal foam; PCM, Metal foam, 3104 Condensed Matter Physics, 1507 Fluid Flow and Transfer Processes, Fin, 2210 Mechanical Engineering, fin, Melting enhancement, metal foam, PCM, melting enhancement

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    162
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
162
Top 1%
Top 10%
Top 0.1%