Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Heat and Mass Transfer
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermodynamic analysis of internally-cooled membrane-based liquid desiccant dehumidifiers of different flow types

Authors: Wei Li; Ye Yao;

Thermodynamic analysis of internally-cooled membrane-based liquid desiccant dehumidifiers of different flow types

Abstract

Abstract Internally-cooled membrane-based liquid desiccant dehumidifier (IMLDD) can well alleviate the dehumidification deterioration due to the increase of desiccant solution temperature. In the IMLDD, air channels and desiccant solution channels are separated on both sides of semi-permeable membrane. Cooling media flows through tubes inside solution channels to reduce desiccant solution temperature. There exist many flow patterns of fluids (air, desiccant solution and cooling water), which have been proved to have significant effects on the performance of IMLDD. Therefore, to find the optimal flow type of IMLDD and operating conditions, the mathematical model for IMLDD was developed and validated experimentally, and the exergy and entransy theories were first adopted to analyze the effects of inlet parameters on the performance of IMLDD of various flow types. The results showed that counter flow arrangement between air and solution and parallel flow arrangement between solution and cooling water had the best dehumidification performance. The trend of dehumidification efficiency was opposite to exergy efficiency with the increase of inlet air humidity ratio and solution concentration. The increase of inlet cooling water temperature improved exergy efficiency but decreased dehumidification efficiency accordingly. The research of this paper is helpful for the design and optimization of IMLDD.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%