Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Heat and Mass Transfer
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of low temperature and charge profile on the aging of lithium-ion battery: Non-invasive and post-mortem analysis

Authors: Weixiong Wu; Ruixin Ma; Jizhen Liu; Min Liu; Weiliang Wang; Qian Wang;

Impact of low temperature and charge profile on the aging of lithium-ion battery: Non-invasive and post-mortem analysis

Abstract

Abstract In this paper, the low temperature performance of lithium-ion batteries under various charge rates ranged from 0.2 C to 1 C were studied. To shed some light on the degradation modes and aging mechanism, non-invasive and post-mortem analysis were adopted. The results reveal that there is a considerable reversible capacity loss and internal resistance increase with the increase in charge rate. Particularly, the relative capacity of 1C charged cell after 150 cycles is below 0.8, indicating the end of life is achieved. In addition, the increased internal resistance will lead to a substantial increase in heat generation rate, which is an important factor to the thermal safety control of battery related to the design of thermal management strategy. Besides the resistance increase, two major degradation modes i.e., loss of lithium inventory and loss of active material are demonstrated according to the differential voltage and incremental capacity analysis. It is found that lithium plating is regarded as the main aging mechanism. The anode material of cycled cell display distinct deterioration even exfoliated from the copper foil upon a macroscopic check, and a thick deposited layer morphology and cracking of the layer is visible from a micro point of view through cell opening. During the low temperature charging, lithium plating could be triggered due to the limitation of charge transfer resulted from high-rate charge as well as the limitation of solid-state diffusion resulted from low temperature. The continuous lithium-consuming during cycling will lead to secondary SEI formation, which may result in dead lithium and stripping, eventually reversible capacity loss.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 1%
Top 10%
Top 1%