Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Heat and Mass Transfer
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Periodic structures for melting enhancement: observation of critical cell size and localized melting

Authors: Chunrong Zhao; Michael Opolot; Ming Liu; Ji Wang; Frank Bruno; Simone Mancin; Kamel Hooman;

Periodic structures for melting enhancement: observation of critical cell size and localized melting

Abstract

The use of metallic periodic structures was considered for melting rate enhancement of a phase change material (PCM) contained in a rectangular enclosure isothermally heated from the side. The critical (optimized) cell size, or pore size, of a periodic structure with fixed porosity, realising the shortest melting time by maximizing the convection and conduction heat transfer rate into the PCM, was studied. Furthermore, the effects of material properties (copper, aluminium, nickel, and stainless steel), enclosure length, wall-melting temperature difference and porosity were numerically investigated. It was observed that increasing porosity and/or reducing thermal conductivity enlarged the critical cell size (i.e. the optimal cell size that minimizes the melting time). The critical PPIs (pores per inch) of copper and aluminium periodic structures for all studied porosities were 10; for nickel, the critical values were 10 PPIs for porosity values of 0.75, 0.8 and 0.85 while it reduces to 5 PPI for the highest porosity considered here being 0.95. Interestingly, showing a different trend, the critical PPI of stainless-steel structures was 5 for the lowest porosity (0.75) and reduced to 3 for higher porosities. The results clearly demonstrated localised melting which was observed in all periodic structures except for the 10 PPI stainless-steel case. Scattered melting islands are observed as opposed to a moving interface when ϕ=(d p /L)α ligament /α PCM >1. For such cases, localized melting occurs and the PCM is melted at the ligaments away from the heated wall before the melt front reaches those ligaments. ; Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. ; Process and Energy

Country
Netherlands
Keywords

PCM melting, Critical cell size, 612, Periodic structure

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 6
    download downloads 19
  • 6
    views
    19
    downloads
    Data sourceViewsDownloads
    TU Delft Repository619
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
10
Top 10%
Average
Top 10%
6
19
Green
bronze