Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Heat and Mass Transfer
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Heat transfer improvement of phase change materials by metal foams and nanoparticles for efficient electronic thermal management: A comprehensive study

Authors: Ibtissam Afaynou; Hamza Faraji; Khadija Choukairy; Müslüm Arıcı; Kaoutar Khallaki;

Heat transfer improvement of phase change materials by metal foams and nanoparticles for efficient electronic thermal management: A comprehensive study

Abstract

In recent decades, ensuring efficient thermal control of electronic components (ECs) has emerged as a critical concern. To address this, phase change materials (PCMs) are increasingly utilized to augment passive thermal management efficiency. In this work, a two-dimensional numerical study is conducted to investigate the melting of the PCM (n-eicosane) composited with metal foam (MF) and/or nanoparticles (NePCM) in a rectangular heat sink. The volume averaging technique based on the thermal equilibrium model is formulated for transient simulations. The impact of various parameters such as MF type, pores per inch (PPI), porosity, concentration of nanoparticles, and combination of NePCM and MF is investigated. Results show that the PCM/Copper foam composite with high porosity (0.95) and low PPI (10PPI) based heat sink provided a high rate of heat transfer and a more uniform melting process, which results in a drop in the electronic component temperature by 20.44 °C, and shortens the melting time by 648 s as compared to the pure PCM-based heat sink. In addition, the maximum effective thermal conductivity improvement of PCM is found to be 98% for Copper foam, with an effective latent heat reduction of 92.46%. Furthermore, outcomes reveal that using MF alone could notably enhance the melting performance. However, the addition of nanoparticles to cases involving MF, regardless of the nanoparticle volume fraction, adversely affects the melting performance of PCM. This indicates the negligible effect of nanoparticle insertion in the presence of MF. Therefore, in the context of this research, the cooling of the electronic component is primarily influenced by heat transfer through conduction than natural convection.

Country
Turkey
Powered by OpenAIRE graph
Found an issue? Give us feedback