Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Hydrogen Energy
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Innovative concepts for hydrogen production processes based on coal gasification with CO2 capture

Authors: Fred Starr; Evangelos Tzimas; Calin-Cristian Cormos; S. D. Peteves;

Innovative concepts for hydrogen production processes based on coal gasification with CO2 capture

Abstract

Abstract This paper investigates the technical aspects of innovative hydrogen production concepts based on coal gasification with CO 2 capture. More specifically, it focuses on the technical evaluation and the assessment of performance of a number of plant configurations based on standard entrained-flow gasification processes (dry feed and slurry feed types) producing hydrogen at pipeline pressure, which incorporate improvements for increasing hydrogen purity and pressure. The dry feed type of entrained-flow gasifier is currently considered to be the most efficient means of producing hydrogen from coal. The main shortcomings are relatively low hydrogen purity due to the need of using nitrogen as a transport gas for the coal and a pressure limitation of this type of design. The purity issue can be solved by using captured CO 2 to transport the coal in the gasifier. The pressure limitation can be overcome by using in-plant compression of the raw syngas. Simulations, made using commercial process flow modelling packages (ChemCAD), show that these changes can be made without compromising plant efficiency; on the contrary, the efficiency slightly increases because of the better thermal integration of the plant.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    125
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
125
Top 1%
Top 1%
Top 1%