
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cost analysis of a thermochemical Cu–Cl pilot plant for nuclear-based hydrogen production

Abstract This article presents an economic analysis of a Cu–Cl pilot plant with an associated parametric study. The analysis takes into account the different types of cost components such as the energy costs, operation, maintenance, fixed charges on capital investment, etc. The cost items with their percentage ranges and factors that affect accuracy and scaling are examined. Through this scaling method, the total capital investment and total cost of a Cu–Cl pilot plant are estimated by scaling against the corresponding costs of an S–I plant as presented by Brown et al. Using a six-tenths-factor rule (scaling method) with a capacity factor of 0.6, the fixed-capital investment and product cost of a Cu–Cl pilot plant are roughly estimated at about US$27.5 M and US$4.6 M for a plant capacity of 5 tons of hydrogen per day, which could be higher due to yet unforeseen factors and costs, not currently available with existing information about the Cu–Cl cycle. The fixed-capital investment and total product cost correspond to the operating and maintenance costs of the plant, respectively. The sensitivity studies show that the costs vary significantly with the size of pilot plant capacity, percentages of cost components and the capacity factor. The parametric studies with variable plant capacities, approximations and capacity factors are performed and results are illustrated in this article. Numerous assumptions and approximations have been used in this paper, in absence of actual equipment cost data for the Cu–Cl cycle. Therefore, the results of this paper cannot be generalized for other specific cases and scenarios.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).107 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
