Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Academica-e
Article . 2009
License: CC BY NC ND
Data sources: Academica-e
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Hydrogen Energy
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of the power supply on the energy efficiency of an alkaline water electrolyser

Authors: Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Gubía Villabona, Eugenio; Gandía Pascual, Luis; Diéguez Elizondo, Pedro; Sanchis Gúrpide, Pablo;

Influence of the power supply on the energy efficiency of an alkaline water electrolyser

Abstract

Electric energy consumption represents the greatest part of the cost of the hydrogen produced by water electrolysis. An effort is being carried out to reduce this electric consumption and improve the global efficiency of commercial electrolysers. Whereas relevant progresses are being achieved in cell stack configurations and electrodes performance, there are practically no studies on the effect of the electric power supply topology on the electrolyser energy efficiency. This paper presents an analysis on the energy consumption and efficiency of a 1 N m3 h1 commercial alkaline water electrolyser and their dependence on the power supply topology. The different topologies of power supplies are first summarised, analysed and classified into two groups: thyristor-based (ThPS) and transistor-based power supplies (TrPS). An Electrolyser Power Supply Emulator (EPSE) is then designed, developed and satisfactorily validated by means of simulation and experimental tests. With the EPSE, the electrolyser is characterised both obtaining its I–V curves for different temperatures and measuring the useful hydrogen production. The electrolyser is then supplied by means of two different emulated electric profiles that are characteristic of typical ThPS and TrPS. Results show that the cell stack energy consumption is up to 495 W h N m3 lower when it is supplied by the TrPS, which means 10% greater in terms of efficiency. We gratefully acknowledge Acciona Biocombustibles and Ingeteam, and particularly Mr. Eugenio Guelbenzu and Mr. Javier Pérez, for their financial and permanent support. We also acknowledge the Spanish Ministry of Science and Technology (grant number DPI2006-15703-C02-02) and the Department of Education of the Government of Navarra for their financial support.

Country
Spain
Keywords

Alkaline water electrolyser, Energy efficiency, Electrolyser power supply, Hydrogen systems

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    138
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 53
    download downloads 173
  • 53
    views
    173
    downloads
    Data sourceViewsDownloads
    Academica-e53173
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
138
Top 1%
Top 1%
Top 10%
53
173
Green