
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Performance of solid oxide electrolysis cells based on composite La0.8Sr0.2MnO3−δ – yttria stabilized zirconia and Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen electrodes

handle: 10203/96760
Abstract The electrochemical performance of solid oxide electrolysis cells (SOECs) having barium strontium cobalt ferrite (Ba0.5Sr0.5Co0.8Fe0.2O3−δ) and composite lanthanum strontium manganite–yttria stabilized zirconia (La0.8Sr0.2MnO3−δ–YSZ) oxygen electrodes has been studied over a range of operating conditions. Increasing the operating temperature (973 K to 1173 K) significantly increased electrochemical performance and hydrogen generation efficiency for both systems. The presence of water in the hydrogen electrode was found to have a marked positive effect on the EIS response of solid oxide cell (SOC) under open circuit voltage (OCV). The difference in operation between electrolytic and galvanic modes was investigated. Cells having BSCF oxygen electrodes (Ni–YSZ/YSZ/BSCF) showed greater performance than LSM-YSZ-based cells (Ni–YSZ/YSZ/LSM-YSZ) over the range of temperatures, in both galvanic and electrolytic regimes of operation. The area specific resistance (ASR) of the LSM-YSZ-based cells remained unchanged when transitioning between electrolyser and fuel cell modes; however, the BSCF cells exhibited an overall increase in cell ASR of ∼2.5 times when entering electrolysis mode. Durability studies of cells in electrolysis mode were made over 20 h periods. Significant degradation of the BSCF cell was observed (0.02 V h−1) while the LSM-YSZ cell exhibited more stable performance under the same operating conditions (0.3 A cm−2, 1123 K, and H2O/H2 = 70/30). Increasing the electrolysis current density accelerated performance degradation. Electrochemical impedance spectroscopy measurements and microstructure analysis were used to investigate the cause of performance degradation, with evidence emerging of microstructural change in the case of the BSCF electrode.
- Mahidol University Thailand
- King Mongkut's University of Technology Thonburi Thailand
- Korean Association Of Science and Technology Studies Korea (Republic of)
- Mahidol University Thailand
- Korean Association Of Science and Technology Studies Korea (Republic of)
621
621
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).91 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
