Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2013
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Hydrogen Energy
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2013
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combustion analysis of a spark ignition i. c. engine fuelled alternatively with natural gas and hydrogen-natural gas blends

Authors: Mariani A; Prati M. V; UNICH, Andrea; MORRONE, Biagio;

Combustion analysis of a spark ignition i. c. engine fuelled alternatively with natural gas and hydrogen-natural gas blends

Abstract

This paper describes an experimental activity performed on a passenger car powered by a spark ignition engine fuelled alternatively with natural gas (CNG) and hydrogen-natural gas blends, with 15% (HCNG15) and 30% (HCNG30) of hydrogen by volume. The vehicle was tested on a chassis dynamometer over different driving cycles, allowing the investigation of more realistic operating conditions than those examined on an engine test bed at steady state conditions. Fuel consumption was estimated using the carbon balance methodology, allowing the comparison of engine average efficiency over the driving cycles for the tested fuels. Furthermore, cylinder pressure was measured and, by processing the pressure signal, a combustion analysis was performed allowing to estimate the burning rate and combustion phasing. Ignition timing was the same for all the tested fuels, in order to assess their interchangeability on in-use vehicles. Results showed CO2 emission reduction between 3% and 6% for HCNG15 and between 13% and 16% for HCNG30 respect to natural gas. Fuel consumption in MJ/km did not show significant differences between CNG and HCNG15, while reductions between 3% and 7% have been observed with HCNG30. The heat release rate increased with hydrogen content in the blends, reaching values higher than those attained using CNG. The combustion duration, calculated as the angle between 10% and 90% of heat released, has been shortened, with 16% reduction for HCNG15 and 21% for HCNG30 respect to CNG at 2.5 bar imep and 2400 rpm. As a consequence, hydrogen addition resulted in a combustion phasing advance respect to CNG. Cycle-by-cycle variability decreased, particularly at low loads, due to the positive effect of hydrogen on combustion stability.

Country
Italy
Keywords

Driving cycles, Engine efficiency, Natural gas, Internal combustion engine, Combustion analysis, Hydrogen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%