
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Economic analysis of hydrogen production from wastewater and wood for municipal bus system

Abstract The levelized cost of hydrogen for municipal fuel cell buses has been determined using the DOE H2A model for steam methane reforming (SMR), molten carbonate fuel cell reforming (MCFC), and wood gasification using wastewater biogas and willow wood chips as energy feedstocks. 300 kg H2/day was chosen as the design capacity. Greenhouse gas emissions were calculated for each for the three processes and compared to diesel bus emissions in order to assess environmental impact. The levelized cost per kilogram for SMR, MCFC, and gasification is $5.12, $8.59, and $10.62, respectively. SMR provided the lowest sensitivity to feedstock price, and lowest levelized cost at various scales, with competitive cost to diesel on a cost/km basis. All three technologies provide a reduction in total greenhouse gases compared to diesel bus emissions, with MCFC providing the largest reduction. These results provide preliminary evidence that small scale distributed hydrogen production for public transportation can be relatively cost-effective and have minimal environmental impact.
- Cornell University United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
