Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Hydrogen Energy
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Digital.CSIC
Article . 2014 . Peer-reviewed
Data sources: Digital.CSIC
Digital.CSIC
Conference object . 2013 . Peer-reviewed
Data sources: Digital.CSIC
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electrocatalytic stability of Ti based-supported Pt3Ir nanoparticles for unitized regenerative fuel cells

Authors: M. Roca-Ayats; G. García; J.L. Galante; M.A. Peña; M.V. Martínez-Huerta;

Electrocatalytic stability of Ti based-supported Pt3Ir nanoparticles for unitized regenerative fuel cells

Abstract

PtIr (3:1) nanoparticles supported on TiC, TiCN and TiN were investigated as bifunctional electrocatalysts for the oxygen electrode of unitized regenerative fuel cells. The electrocatalysts were prepared by the ethylene glycol method. Physicochemical characterization was carried out by X-ray Diffraction, Transmission Electronic Microscope and X-ray Photoelectron Spectroscopy, meanwhile rotating ring-disk electrode and in situ Fourier transform infrared spectroscopy were employed to determine the electrochemical activity and stability. Results reveal the highest activity toward oxygen reduction and evolution reactions on TiCN-based materials, in addition to the best compromise between catalytic activity and stability. In this context, nitrogen loading appears to be an important factor for the catalyst performance and noble metal anchoring. It is observed an increment of particle agglomeration with nitrogen content in the catalyst support. Also, TiN-based catalyst presents the lowest noble metal inclusion and high passivation degree by dissolved oxygen; whereas TiC and TiCN based catalysts develop an anodic peak at ca. 1.1 V, which is associated to TiO2 and CO2 formation. This work has been supported by the Spanish Science and Innovation Ministry under Projects ENE2010-15381 and CTQ2011-28913-CO2-O2. MR and GG acknowledge to the FPU-2012, European Social Fund and JAE Program (CSIC) for financial support. Peer Reviewed

Country
Spain
Keywords

Unitized regenerative fuel cells, Oxygen evolution reaction, Titanium supports, Bifunctional electrocatalyst, Oxygen reduction reaction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 20
    download downloads 22
  • 20
    views
    22
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC2022
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
51
Top 10%
Top 10%
Top 10%
20
22
Green